The Linear Voting Model
نویسندگان
چکیده
We study voting models on graphs. In the beginning, the vertices of a given graph have some initial opinion. Over time, the opinions on the vertices change by interactions between graph neighbours. Under suitable conditions the system evolves to a state in which all vertices have the same opinion. In this work, we consider a new model of voting, called the Linear Voting Model. This model can be seen as a generalization of several models of voting, including among others, pull voting and push voting. One advantage of our model is that, even though it is very general, it has a rich structure making the analysis tractable. In particular we are able to solve the basic question about voting, the probability that certain opinion wins the poll, and furthermore, given appropriate conditions, we are able to bound the expected time until some opinion wins. 1998 ACM Subject Classification C.2.4 Distributed Systems, G.2 Discrete Mathematics, G.3 Probability and Statistics
منابع مشابه
Application of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملA New Voting Model For Groups With Members of Unequal Power and Proficiency
To proposing a voting model for groups with members of unequal power and proficiency, we present some models for rank ordering efficient candidates, by extending the ideas of some authors. Then, we propose a new methodology to rank the ranking models for the performance indices of only DEA efficient candidates based on a classical voting model. Also, an approach for combining the results obtain...
متن کاملAn improved approach for ranking the candidates in a voting system based on efficiency intervals
This paper proposes improvements and revisions to a recent approach in a voting system, and provides an effective approach with a stronger discriminate power. For this purpose, the advantage of a linear transformation is utilized to redene a previously used concept of virtual worst candidate, by incorporating the existing weight restrictions. Then, the best score of this virtual candidate is us...
متن کاملVoting and different ranking orders in DEA
Data Envelopment Analysis (DEA) technique now widely use for efficiency evaluation of a set of Decision Making Units (DMUs). As regards of the necessity for ranking efficient units different DEA models presented each of which has advantages and rank efficient units from special aspects. Note that all the existing ranking models have disadvantages, as well and there is not a model in which all t...
متن کاملVoting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems
some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...
متن کاملVoting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems
some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016